Матвеев Ю.Н., Стукалова Н.А., Михальцов Н.Г. Причины возникновения возможных аварийных ситуаций на химически опасном объекте. // Проблемы информатики в образовании, управлении, экономике и технике: Сб. статей XVI Междунар. научно-техн. конф. — Пенза: ПДЗ, 2016. — С. 186-190.

УДК 519.711.3

ПРИЧИНЫ ВОЗНИКНОВЕНИЯ ВОЗМОЖНЫХ АВАРИЙНЫХ СИТУАЦИЙ НА ХИМИЧЕСКИ ОПАСНОМ ОБЪЕКТЕ*

Ю.Н. Матвеев, Н.А. Стукалова, Н.Г. Михальцов

ORIGINS OF POSSIBLE ALERT CONDITIONS ON CHEMICALLY DANGEROUS OBJECT

Yu.N. Matveev, N.A. Stukalova, N.G. Mikhaltsov

Аннотация. Рассмотрены причины возникновения аварийных ситуаций на химически опасном объекте. Приведено дерево аварий, которое может быть использовано при проведении расчетов по определению зоны защитных мероприятий.

Ключевые слова: аварийная ситуация, чрезвычайная ситуация, принятие решений, токсичное химическое вещество, стандарт относительной безопасности

Abstract. In article origins of alert conditions on chemically dangerous object are considered. The tree of accidents which can be used in case of when carrying out calculations for determination of a zone of protective measures is given.

Keywords: alert condition, emergency situation, decision-making, toxic chemical, standard of the relative safety.

В РФ насчитывается более трех тысяч шестисот химически опасных объектов, а сто сорок шесть городов с населением более ста тысяч человек расположены в зонах повышенной химической опасности. За последние годы произошло более 250 аварий с выбросом аварийно-опасных химических веществ (АХОВ), во время которых пострадали более 800 и погибли 69 человек. Причем 25% аварий произошло из-за эксплуатации оборудования свыше нормативного срока, коррозии оборудования и неработоспособности контрольно-измерительной аппаратуры.

Прогностические оценки на ближайшую перспективу показывают, что тенденция повышения вероятности химических аварий в ближайшем будущем будет сохраняться. Для этого есть целый ряд предпосылок: рост сложных производств, с применением новых технологий, которые требуют высокую концентрацию энергии и опасных веществ; высокий износ основных производственных фондов, достигающих на ряде предприятий 80-100%; падение технологической и производственной дисциплины, уровня квалификации технического персонала; накопление отходов производства, опасных для окружающей среды; снижение требовательности и эффективности работы надзорных органов; высокая концентрация населения, проживающего вблизи потенциально опасных промышленных объектов; отсутствие или недостаточный уровень предупреждающих мероприятий, способных уменьшить масштабы последствий химических аварий и снизить риск их возникновения; стремление иностранных государств и фирм к инвестированию вредных

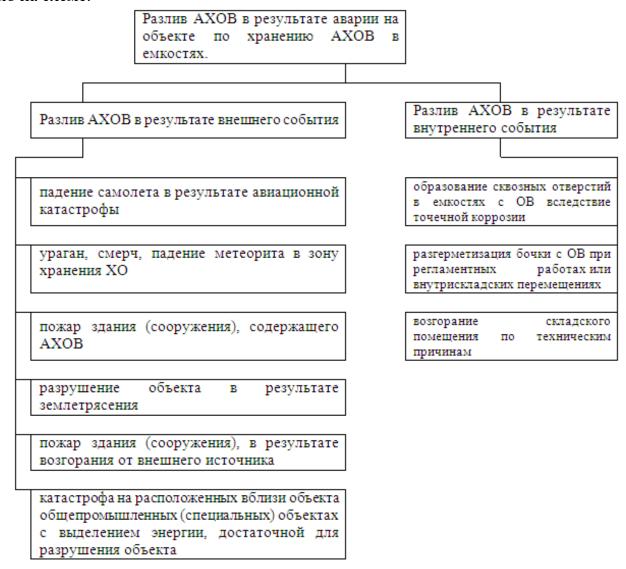
^{*} Работа выполнена при поддержке проекта 15-29-07970 офи_м Российского фонда фундаментальных исследований.

производств на территории России; возрастание вероятности терроризма на химически опасных производствах.

Судя по имеющимся статистическим данным, сегодня многие сложные технические комплексы обладают «внутренней присущей опасностью», причем весьма значительной. Сложные технические системы в нашей стране и за рубежом в большинстве случаев создаются с использованием традиционных правил проектирования и простейших инженерных методов, расчетов и испытаний без обоснования их безопасности. Успех мероприятий по защите производственного персонала, населения и проведение аварийно-спасательных работ зависят от целого ряда факторов. Один из них – обнаружение предпосылок и самого факта возникновения аварий, оповещение работающего персонала, а также населения в зонах возможного заражения. Система обнаружения угрозы и факта возникновения химических аварий должна предвидеть аварию еще на стадии ее «зарождения». Существующие системы обнаружения аварий не имеют средств контроля за выбросами ядовитых веществ с определением их концентраций и зон распространения, или эти средства несовершенны. По данным Госгортехнадзора России, около 80% существующих технических средств имеют срок эксплуатации более 20 лет, морально и физически устарели.

Одна из важнейших задач защиты населения — организация его оповещения и информирования при возникновении чрезвычайной ситуации. Оперативность действия систем оповещения должна составлять считанные минуты. Реальное же время оповещения на большинстве потенциально опасных объектов составляет 25-30 минут и более, что нельзя признать удовлетворительным. Повышение оперативности оповещения может быть достигнуто применением автоматических систем обработки данных и оценки обстановки с использованием системы автоматических датчиков, способных немедленно фиксировать факт аварии и автоматически включать средства оповещения на угрожаемой территории [1].

Решающим условием успешного осуществления вывода и эвакуации промышленного персонала и населения из зон химического заражения является проведение этого мероприятия в короткие сроки, что возможно лишь при заблаговременном планировании, четком осуществлении оповещения и сбора эвакуируемых, организации транспортного и медицинского обеспечения, службы охраны общественного порядка и управления выводом и эвакуацией.


Переход к новым формам хозяйствования усложнил организацию размещения эвакуированных и их всестороннее обеспечение.

Ликвидация последствий химической аварии включает длинный ряд операций: проведение химического контроля и разведки с целью определения площади заражения опасными концентрациями АХОВ, определения мест нахождения пострадавших, наличия и степени опасности вторичных источников и факторов поражения, контроль за распространением АХОВ; локализацию распространения первичного и вторичного облака АХОВ; ликвидацию вторичных факторов поражения; специальную обработку техники, санитарную обработку людей, обеззараживание местности и водоемов; химический контроль полноты дегазации; сбор и утилизацию отходов [2].

Последствия химических аварий хотя и огромны, но не безграничны. При соответствующих мерах по прогнозированию, предупреждению чрезвычайных ситуаций, при своевременном принятии мер защиты, решительной борьбе с ними последствия этих аварий могут быть локализованы и сведены к минимуму.

Потенциальные аварии, связанные с утечкой AXOB, определяются в сценариях аварийных ситуаций, которые представляют собой последовательность возможных случаев, ведущих к высвобождению AXOB. Дифференциацию возможных аварий на промышленных предприятиях принято представлять в виде «дерева аварий».

Дерево аварий при хранении AXOB на химически опасном объекте представлено на схеме.

Применительно к рассматриваемому объекту «дерево аварий» достаточно полно разработано в работе и может быть использовано при проведении расчетов по определению зоны защитных мероприятий.

Библиографический список

1. Матвеев Ю.Н., Стукалова Н.А. Автоматизированное оперативное управление техногенными химико-технологическими объектами при возникновении запроектных аварийных ситуаций // Труды Института системного программирования РАН. 2015. Т. 27. № 6. С. 395–408.

2. Матвеев Ю.Н., Стукалова Н.А. Аспекты уничтожения химического оружия // Актуальные проблемы безопасности жизнедеятельности и экологии : сборник науч. тр. I Междунар. научно-практ. конф. Тверь, 2015. С. 509–512.

Матвеев Юрий Николаевич

Тверской государственный технический университет, г. Тверь, Россия

E-mail: matveev4700@mail.ru

Стукалова Наталия Александровна

Тверской государственный технический университет,

г. Тверь, Россия

E-mail: nast77@mail.ru

Михальцов Николай Григорьевич

Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова, г. Тверь, Россия E-mail: wellcometotver@mail.ru

Matveev Yu.N.

Tver State Technical University, Tver, Russia

Stukalova N.A.

Tver State Technical University, Tver, Russia

Mikhaltsov N.G.

Military Academy of Aerospace Defense of Marshall of the Soviet Union G. K. Zhukova, Tver, Russia