Бажанова С.А., Бобрышева Г.В. Безопасность веб-приложений. // Проблемы информатики в образовании, управлении, экономике и технике: Сб. статей XIX Междунар. научно-техн. конф. – Пенза: ПДЗ, 2019. – С. 070-074.

УДК 004.056.5

БЕЗОПАСНОСТЬ ВЕБ-ПРИЛОЖЕНИЙ

С.А. Бажанова, Г.В. Бобрышева

THE SECURITY OF WEB APPLICATIONS

S.A. Bazhanova, G.V. Bobrysheva

Аннотация. Статья посвящена вопросам безопасности веб-ресурсов. Рассматриваются виды уязвимостей веб-приложений, а также способы предотвращения атак на веб-ресурсы.

Ключевые слова: веб-ресурс, информационная безопасность, угрозы информационной безопасности, способы предотвращения угроз.

Abstract. The article is devoted to the security of web resources. We consider the types of vulnerabilities of web applications, as well as ways to prevent attacks on web resources.

Keywords: web resource, information security, information security threats, ways to prevent threats.

В настоящее время практически любая организация имеет свой официальный сайт или страничку, которые чаще всего размещают на бесплатном хостинге. Использование бесплатного хостинга расширяет возможности третьих лиц по получению несанкционированного доступа к информационным ресурсам организации, размещенным в веб-приложении, и тем самым существенно усложняет решение проблемы обеспечения его безопасности.

В качестве третьих лиц могут быть как законные пользователи вебприложения (например, администраторы), так и внешние нарушители.

Внешние нарушители являются основным источником угроз информационной безопасности веб-приложений, в качестве которых часто выступают недобросовестные конкуренты, руководствующиеся преступными намерениями, например, хищение денежных средств, модификация или уничтожение информационных ресурсов или компрометация веб-приложения.

Следствием компрометации веб-приложения являются финансовые потери, в частности, в форме упущенной прибыли, которая может заключаться в потери важного клиента или срыва финансовой сделки. При этом предпосылки к компрометации веб-приложения могут возникнуть, начиная с момента возникновения идеи его создания и заканчивая выходом из употребления. Это объясняется тем, что разработчики не всегда уделяют достаточно внимания вопросам обеспечения информационной безопасности вебприложения, сосредоточиваясь в первую очередь на его функциональности, а администратор веб-приложения часто недостаточно осведомлен в вопро-

сах защиты информации, в результате чего может совершать ошибки в рамках своих полномочий, которые существенно повышают уровень его уязвимости. Поэтому обеспечение безопасности веб-при-ложений является актуальной задачей на протяжении всего их жизненного цикла.

При разработке веб-приложений данная задача часто решается за счет следования концепции SSDL (Secure software development lifecycle) [5]. Данная концепция охватывает все этапы жизненного цикла веб-при-ложений и обеспечивает поддержание необходимого уровня их информационной безопасности путем нацеливания разработчиков и администраторов на необходимость первоочередного решения вопросов защиты информационных ресурсов, включая идентификацию рисков реализации угроз и управления ими.

На основе результатов аналитического анализа выделены потенциальные угрозы информационной безопасности веб-приложений иосуществлена их классификация, представленная на рисунке.

Классификация угроз информационной безопасности

Реализация потенциальных угроз информационной безопасности связана с такими факторами, как уязвимость веб-приложений или их компонентов, а также с использованием слабых механизмов аутентификации пользователей. Эффективность обеспечения информационной безопасности веб-приложений во многом определяется своевременностью и качеством анализа потенциальных угроз, и выбором способа их предотвращения.

В настоящее время многие разработчики и администраторы для анализа потенциальных угроз информационной безопасности используют список уязвимостей открытого проекта обеспечения безопасности веб-приложений «OWASP» (Openweb application security project) [3]. На основе проведенного аналитического анализа источников [1, 2, 4] и списка уязвимостей «OWASP» выявлены наиболее опасные угрозы информационной безопасности веб-приложений и возможные следствия от их проявления и предложены способы предотвращения (таблица).

Квалификация потенциальных угроз информационной безопасности веб-приложений

Название угрозы	Следствия угрозы	Способы предотвращения угрозы
1	2	3
Injection	Выполнение непреднаме-	- Проверка данных пользователя
	ренных команд, например,	на стороне сервера
	неправомерные SQL, PHP,	 Использование безопасных API
	LDAP запросы и команды	и параметризованных запросов
	OC	
Broken	Сломанная аутентификация	Использование многофакторной аутенти-
authentication		фикации, изоляции сессии, безопасных
		файлов cookie
Sensitive data	Кража или модификация	- Использование безопасных протоколов и
exposure	конфиденциальных данных	алгоритмов
		- Отключение кэширования ответов
		с конфиденциальными данными
XML External	Выполнение вредоносных	- Предотвращение сериализации
Entities (XXE)	задач	конфиденциальных данных
		- Предотвращение загрузки вредоносного
		XML путем использования подхода белого
		списка на стороне сервера
		- Использование WAF для обнаружения и
		блокировки XXE
Broken Access	Сломанный	- Преобразование токенов и куки-файлов в
control	контроль доступа	недействительные после выхода
		из системы
		- Осуществление принудительного входа /
		выходы из системы после смены пароля
		- Ограничение ресурсов на стороне сервера
		- Ограничение доступа ко всем ресурсам на
		основе ролей
Security	Несоответствие конфигура-	- Изменение настроек по умолчанию
misconfigurations	ции требованиям безопасно-	- Установка только необходимых функций
	сти	из фреймворка
		- Проверка безопасности конфигурации че-
		рез фиксированные интервалы времени
Cross Site Scripting	Возникает межсайтовый	- Вывод кодировки и экранирование нена-
(XSS)	скриптинг	дежных символов
	=	- Включение Content-Security-policy (CSP)

1	2	3
Insecure	Приложения, которые зави-	- Шифрование сериализованных данных
Deserialization	сят от клиента,	- Использование десериализаторов
	для поддержания	для запуска с наименьшими
	состояния, могут допускать	привилегиями
	вмешательство	
	в сериализованные данные	
Insufficient logging	Неэффективное отслежива-	- Непрерывный мониторинг трафика при-
and monitoring	ние злонамеренных намере-	ложений и анализ логов
	ний злоумышленников	- Использование эффективных процедур
		безопасности и процедур реагирования
Using Components	Нарушение безопасности	- Регулярное исправление нарушений
with known vulner-	или захват сервера	- Регулярное отслеживание информации по
abilities		новым уязвимостям и методам их предот-
		вращения / исправления
		- Проверка устройств / программного обес-
		печения на уязвимость и их предотвраще-
		ние

Для того чтобы защититься от потенциальных угроз, необходимо соблюдать следующие рекомендации:

- 1) использовать протокол https (Hyper Text Transfer Protocol Secure), поддерживающий шифрование и защиту данных пользователей при передаче [6];
 - 2) регулярно обновлять программное обеспечение;
- 3) использовать и обновлять инструменты для анализа безопасности приложения;
- 4) использовать максимально длинные пароли, построенные на основе разных алфавитов, и их шифрование;
 - 5) осуществлять проверку данных, полученных со стороны клиента;
- 6) использовать механизмы распределения прав доступа к информационным ресурсам;
 - 7) использовать файлы Cookie;
- 8) не хранить строки подключения к базам данных и ключи к сервисам в открытом виде.

Выделенные виды потенциальных угроз информационной безопасности могут быть использованы при разработке тестов для тестирования вебприложений на уязвимость.

Библиографический список

- 1. Уязвимости веб-приложений. URL: https://www.ptsecurity.com/upload/corporate/ru-ru/analytics/Web-Vulnerability-2016-rus.pdf (дата обращения: 01.09.19).
- 2. Список уязвимостей 2017 года // Официальный сайт проекта «OWASP». URL: https://www.owasp.org/index.php/Top_10-2017_Top_10 (дата обращения: 10.09.19).

- 3. HarpreetPassi. OWASP-Top 10 Vulnerabilities in web applications (updated for 2018). URL: https://www.greycampus.com/blog/information-security/owasp-top-vulnerabilities-in-web-applications (дата обращения: 07.04.19).
- 4. Поставщик сервисов для обеспечения безопасности приложений // Официальный сайт Positive Technologies. URL: https://www.ptsecurity.com/ww-en/services/sdl/ (дата обращения: 11.09.19).
- 5. Как защитить веб-приложение. URL: https://tproger.ru/translations/webapp-security/ (дата обращения: 07.09.19).

Бажанова Светлана Андреевна Пензенский государственный университет, г. Пенза, Россия

Бобрышева Галина Владимировна Пензенский государственный университет, г. Пенза, Россия

Bazhanova S.A.Penza State University,
Penza, Russia

Bobrysheva G.V. Penza State University, Penza, Russia