МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ВСЕРОССИЙСКАЯ ГРУППА ТЕОРИИ ИНФОРМАЦИИ ІЕЕЕ АКАДЕМИЯ ИНФОРМАТИЗАЦИИ ОБРАЗОВАНИЯ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ООО «ОТКРЫТЫЕ РЕШЕНИЯ» ОБЩЕСТВО «ЗНАНИЕ» РОССИИ ПРИВОЛЖСКИЙ ДОМ ЗНАНИЙ

XXII Международная научно-техническая конференция

ПРОБЛЕМЫ ИНФОРМАТИКИ В ОБРАЗОВАНИИ, УПРАВЛЕНИИ, ЭКОНОМИКЕ И ТЕХНИКЕ

Сборник статей

Декабрь 2022 г.

Пенза

УДК 004 ББК 32.81я43+74.263.2+65.050.2я43 П781

ПРОБЛЕМЫ ИНФОРМАТИКИ В ОБРАЗОВАНИИ, УПРАВЛЕНИИ, ЭКОНОМИКЕ И ТЕХНИКЕ:

сборник статей XXII Международной научно-технической конференции. – Пенза: Приволжский Дом знаний, 2022. – 356 с.

ISBN 978-5-8356-1800-2 ISSN 2311-0406

Под редакцией *В.И. Горбаченко*, доктора технических наук, профессора;

В.В. Дрождина, кандидата технических наук, профессора

Информация об опубликованных статьях предоставлена в систему Российского индекса научного цитирования (РИНЦ) по договору № 573-03/2014К от 18.03.2014.

ISBN 978-5-8356-1800-2 ISSN 2311-0406

- © Пензенский государственный университет, 2022
- © АННМО «Приволжский Дом знаний», 2022

XXII International scientific and technical conference

PROBLEMS OF INFORMATICS IN EDUCATION, MANAGEMENT, ECONOMICS AND TECHNICS

December, 2022

Penza

ЭФФЕКТИВНАЯ ОБРАБОТКА ГРАФОВ В ПРОГРАММНЫХ СИСТЕМАХ

В.В. Дрождин, А.Ю. Комаров

EFFICIENT GRAPH PROCESSING IN SOFTWARE SYSTEMS

V.V. Drozhdin, A.Yu. Komarov

Аннотация. Рассмотрены представления графов с помощью массивов, множеств и позиционных битовых строк, а также сравнение эффективности их обработки по критерию временной сложности.

Ключевые слова: граф, представление графа, временная сложность.

Abstract. Representations of graphs using arrays, sets and positional bit strings are considered, as well as a comparison of the efficiency of their processing by the criterion of time complexity.

Key words: graph, graph representation, time complexity.

При решении различных задач на компьютере необходима эффективная обработка данных. Критерий эффективности приобретает особую важность при обработке данных сложной структуры и данных большого объема. Для представления и обработки взаимосвязанных данных сложной структуры широко используются графы различного вида, поэтому эффективная реализация и обработка графов в программных системах является важной задачей теории алгоритмов.

Рассмотрим эффективное представление и обработку графов в программных системах на примере решения задачи определения количества компонентов связности в неориентированном графе. Для представления и обработки графа будем использовать массивы, множества и позиционные битовые строки.

В варианте 1 граф представляется списком вершин и списком ребер, а для формирования компонентов связности используются множества.

В варианте 2 граф представляется битовой строкой вершин и списком ребер и для формирования компонентов связности также используется битовая строка.

Пусть имеется граф

$$G(V,E),\,V=\{v_i\},\,E=\{e_k\},\,\,e_k=<\!\!v_i,\,v_j\!\!>,$$
 где $i,j=\overline{1...n},\,k=\overline{1...m}.$

Процесс решения задачи определения количества компонентов связности в графе состоит из следующих шагов:

- 1) ввод графа;
- 2) определение изолированных вершин в графе;
- 3) последовательное построение компонентов связности графа;
- 4) вывод количества компонентов связности.

Решение задачи с представлением графа в форме варианта 1 выполняется следующим образом:

ввод графа G осуществляется в виде списков вершин V и ребер Е;

для поиска изолированных вершин последовательно просматриваются ребра графа, и каждая вершина ребра ищется в списке вершин и помечается как связанная. Временная сложность данного шага равна $t = O(m^*n)$;

для формирования компонентов связности организуются два цикла: внешний цикл выполняется, пока есть неиспользованные ребра, а внутренний цикл осуществляет выбор ребер, связанных с текущей компонентой связности, и включения вершин в структуру (множество). Так как поиск и включение вершин в set являются более сложными по сравнению с операциями сравнения и сложения, то обработку set целесообразно считать достаточно сложной. Временная сложность данного шага равна $t = O(m^2)$.

Общая временная сложность решения задачи в соответствии с вариантом 1 равна:

$$t = O(m*n + m^2).$$

Решение задачи с представлением графа в форме варианта 2 выполняется следующим образом:

ввод графа G осуществляется в виде битовой строки вершин V и списка ребер E;

для поиска изолированных вершин последовательно просматриваются ребра графа, и каждая вершина ребра без поиска включается в битовую строку. Временная сложность данного шага равна t = O(m);

для формирования компонентов связности организуются два цикла: внешний цикл выполняется, пока есть неиспользованные ребра, а внутренний цикл осуществляет выбор ребер, связанных с текущей компонентой связности, и включения вершин в битовую строку. Так как при включении вершин в битовую строку поиск не требуется, а операция включения сравнима с операциями сравнения, то действия по обработке битовой строки целесообразно считать элементарными. Временная сложность данного шага равна $t = O(m^2)$.

Общая временная сложность решения задачи в соответствии с вариантом 2 равна:

$$t = O(m + m^2).$$

Оценку времени решения задачи двумя рассмотренными способами выполним путем разработки программ на языке C++ в среде программирования MSV isual Studio. Оценка выполнялась на случайных графах G размерности $n=\overline{10..200}$, $m=\overline{15..500}$ и n< m.

По результатам испытаний получены временные оценки в миллисекундах решения задачи определения количества компонентов связности графа, приведенные в таблице.

Размерность графа n * m	200 * 500	150 * 200	50 * 83	10 *15
Вариант 1	176	67	11	0.029
Вариант 2	0.658	0.49	0.168	0.001

По результатам исследований можно сделать вывод, что эффективное решение большого числа небольших (микро) задач обработки данных позволяет повышать эффективность решения больших и сложных задач путем уменьшения времени их решения на несколько порядков.

Дрождин Владимир Викторович Комаров Артем Юрьевич Пензенский госуларственный

Пензенский государственный университет,

г. Пенза, Россия

Drozhdin V.V. Komarov A.Yu.

Penza State University,

Penza, Russia

УДК 004.42

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ ИССЛЕДОВАНИЯ ЭФФЕКТИВНОСТИ СТРУКТУРНОГО РЕЗЕРВИРОВАНИЯ ТЕХНИЧЕСКИХ СИСТЕМ

В.В. Лебедев, А.Н. Неведомский, Ю.Н. Матвеев

SOFTWARE FOR STUDYING THE EFFICIENCY OF STRUCTURAL RESERVATION OF TECHNICAL SYSTEMS

V. V. Lebedev, A. N. Nevedomskiy, Y.N. Matveev

Аннотация. В статье рассматривается программное обеспечение для исследования свойств интенсивности отказа технической системы. Приводятся исследования выигрыша надёжности по вероятности отказа системы при общем резервировании и с постоянно включенным резервом.